学习smallpt全局光照引擎

smallpt

今天给大家介绍一个全局光照引擎,该程序作者是kevinbeason。代码不长,只要100行左右,采用了Monte Carlo模拟算法

图片效果

渲染出来的图片最终效果

result_25k.png

代码动态演示

展示区域就在下边这个canvas里面吧(注意:这个非常非常非常消耗性能,慎点)

该程序通过像素采样和作者设定好的对象数值进行渲染

采样率越高,绘图质量越好,性能消耗越大

实际采样率达到25000就已经是超级高的质量了,可惜性能…

在作者的网站里面还给出了其他集中场景的数值设定其他场景数值
可以通过修改参数渲染出不同的场景

设置采样率(实际值要*4):     
源代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
function RandomLCG(seed) {
return function() {
seed = (214013 * seed + 2531011) % 0x100000000;
return seed * (1.0 / 4294967296.0);
};
}
function Vec(x, y, z) { this.x = x; this.y = y; this.z = z; }
Vec.prototype = {
add: function(b) {
return new Vec(this.x + b.x, this.y + b.y, this.z + b.z);
},
sub: function(b) {
return new Vec(this.x - b.x, this.y - b.y, this.z - b.z);
},
mul: function(b) {
return new Vec(this.x * b, this.y * b, this.z * b);
},
mult: function(b) {
return new Vec(this.x * b.x, this.y * b.y, this.z * b.z);
},
norm: function() {
return this.mul(1.0 / Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z));
},
dot: function(b) {
return this.x * b.x + this.y * b.y + this.z * b.z;
},
cross: function(b) {
return new Vec(this.y * b.z - this.z * b.y, this.z * b.x - this.x * b.z, this.x * b.y - this.y * b.x);
}
};
Vec.Zero = new Vec(0, 0, 0)
Vec.XAxis = new Vec(1, 0, 0)
Vec.YAxis = new Vec(0, 1, 0)
Vec.ZAxis = new Vec(0, 0, 1)
Refl = {DIFF: 0,SPEC: 1,REFR: 2};
function Ray(o, d) { this.o = o; this.d = d }
function Sphere(rad, p, e, c, refl) {
this.rad = rad;
this.p = p;
this.e = e;
this.c = c;
this.refl = refl;
this.sqRad = rad * rad;
this.maxC = Math.max(Math.max(c.x, c.y), c.z);
this.cc = c.mul(1.0 / this.maxC);
}
Sphere.prototype = {
intersect: function(r) {
// Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
var op = this.p.sub(r.o);
var b = op.dot(r.d);
var det = b * b - op.dot(op) + this.sqRad;
var eps = 1e-4;
if (det < 0)
return 0;
else {
var dets = Math.sqrt(det)
if (b - dets > eps)
return b - dets;
else if (b + dets > eps)
return b + dets;
else
return 0;
}
}
};
// Scene: radius, position, emission, color, material
spheres = [
new Sphere(1e5, new Vec(1e5 + 1, 40.8, 81.6), Vec.Zero, new Vec(.75, .25, .25), Refl.DIFF), //Left
new Sphere(1e5, new Vec(-1e5 + 99, 40.8, 81.6), Vec.Zero, new Vec(.25, .25, .75), Refl.DIFF), //Rght
new Sphere(1e5, new Vec(50, 40.8, 1e5), Vec.Zero, new Vec(.75, .75, .75), Refl.DIFF), //Back
new Sphere(1e5, new Vec(50, 40.8, -1e5 + 170), Vec.Zero, Vec.Zero, Refl.DIFF), //Frnt
new Sphere(1e5, new Vec(50, 1e5, 81.6), Vec.Zero, new Vec(.75, .75, .75), Refl.DIFF), //Botm
new Sphere(1e5, new Vec(50, -1e5 + 81.6, 81.6), Vec.Zero, new Vec(.75, .75, .75), Refl.DIFF), //Top
new Sphere(16.5, new Vec(27, 16.5, 47), Vec.Zero, new Vec(1, 1, 1).mul(.999), Refl.SPEC), //Mirr
new Sphere(16.5, new Vec(73, 16.5, 78), Vec.Zero, new Vec(1, 1, 1).mul(.999), Refl.REFR), //Glas
new Sphere(600, new Vec(50, 681.6 - .27, 81.6), new Vec(12, 12, 12), Vec.Zero, Refl.DIFF) //Lite
];
var rand = RandomLCG(0)
function clamp(x) {
if (x < 0)
return 0;
else if (x > 1)
return 1;
else
return x;
}
function toInt(x) {
return Math.pow(clamp(x), 1 / 2.2) * 255 + .5
}
function intersect(r) {
var t = 1e20;
var obj;
for (var i in spheres) {
var s = spheres[i];
var d = s.intersect(r);
if (d != 0 && d < t) {
t = d;
obj = s;
}
}
return [obj, t];
}
function radiance(r, depth) {
var ires = intersect(r);
var obj = ires[0];
var t = ires[1]; // distance to intersection
if (obj == null) {
return Vec.Zero; // if miss, return black
} else {
var newDepth = depth + 1;
var isMaxDepth = newDepth > 100;
// Russian roulette for path termination
var isUseRR = newDepth > 5;
var isRR = isUseRR && rand() < obj.maxC;
if (isMaxDepth || (isUseRR && !isRR))
return obj.e;
else {
var f = (isUseRR && isRR) ? obj.cc : obj.c;
var x = r.o.add(r.d.mul(t));
var n = x.sub(obj.p).norm();
var nl = n.dot(r.d) < 0 ? n : n.mul(-1);
if (obj.refl == Refl.DIFF) // Ideal DIFFUSE reflection
{
var r1 = 2 * Math.PI * rand();
var r2 = rand();
var r2s = Math.sqrt(r2);
var w = nl;
var wo = Math.abs(w.x) > .1 ? new Vec(0, 1, 0) : new Vec(1, 0, 0);
var u = wo.cross(w).norm();
var v = w.cross(u);

var d = (u.mul(Math.cos(r1) * r2s).add(v.mul(Math.sin(r1) * r2s)).add(w.mul(Math.sqrt(1 - r2)))).norm();
return obj.e.add(f.mult(radiance(new Ray(x, d), newDepth)));
}
else if (obj.refl == Refl.SPEC) // Ideal SPECULAR reflection
{
return obj.e.add(f.mult(radiance(new Ray(x, r.d.sub(n.mul(2 * n.dot(r.d)))), newDepth)));
}
else // Ideal dielectric REFRACTION
{
var reflRay = new Ray(x, r.d.sub(n.mul(2 * n.dot(r.d))));
var into = n.dot(nl) > 0; // var from outside going in?
var nc = 1;
var nt = 1.5;
var nnt = into ? nc / nt : nt / nc;
var ddn = r.d.dot(nl);
var cos2t = 1 - nnt * nnt * (1 - ddn * ddn);
if (cos2t < 0) // Total internal reflection
{
return obj.e.add(f.mult(radiance(reflRay, newDepth)));
}
else {
var tdir = (r.d.mul(nnt).sub(n.mul((into ? 1 : -1) * (ddn * nnt + Math.sqrt(cos2t))))).norm();
var a = nt - nc;
var b = nt + nc;
var R0 = a * a / (b * b);
var c = 1 - (into ? -ddn : tdir.dot(n));
var Re = R0 + (1 - R0) * c * c * c * c * c;
var Tr = 1 - Re;
var P = .25 + .5 * Re;
var RP = Re / P;
var TP = Tr / (1 - P);
var result;
if (newDepth > 2) {
// Russian roulette and splitting for selecting reflection and/or refraction
if (rand() < P)
result = radiance(reflRay, newDepth).mul(RP);
else
result = radiance(new Ray(x, tdir), newDepth).mul(TP);
}
else
result = radiance(reflRay, newDepth).mul(Re).add(radiance(new Ray(x, tdir), newDepth).mul(Tr));
return obj.e.add(f.mult(result));
}
}
}
}
}
function render(canvas, status) {
var start = new Date().getTime();
var w = canvas.attributes.width.value;
var h = canvas.attributes.height.value;
var samps = 25;
// cam pos, dir
var cam = new Ray(new Vec(50, 52, 295.6), new Vec(0, -0.042612, -1).norm());
var cx = new Vec(w * .5135 / h, 0, 0);
var cy = (cx.cross(cam.d)).norm().mul(.5135);
// final color buffer
var c = new Array(w * h);
for (var i = 0; i < w * h; i++)
c[i] = Vec.Zero;
// Output
var ctx = canvas.getContext("2d");
var imgdata = ctx.getImageData(0, 0, w, h);
var pixels = imgdata.data;
// Loop over image rows
var y = 0;
setTimeout(renderLine, 0);
function renderLine()
{
status.innerHTML = "Rendering (" + samps * 4 + " spp) " + (100.0 * y / (h - 1)).toFixed(2) + "%";
// Loop cols
for (var x = 0; x < w; x++) {
// 2x2 subpixel rows
for (var sy = 0; sy < 2; sy++) {
var i = (h - y - 1) * w + x;
// 2x2 subpixel cols
for (var sx = 0; sx < 2; sx++) {
var r = Vec.Zero;
for (var s = 0; s < samps; s++) {
var r1 = 2 * rand();
var r2 = 2 * rand();
var dx = r1 < 1 ? Math.sqrt(r1) - 1 : 1 - Math.sqrt(2 - r1);
var dy = r2 < 1 ? Math.sqrt(r2) - 1 : 1 - Math.sqrt(2 - r2);
var d = cx.mul(((sx + .5 + dx) / 2 + x) / w - .5).add(
cy.mul(((sy + .5 + dy) / 2 + y) / h - .5)).add(cam.d);
// Camera rays are pushed forward to start in interior
var camRay = new Ray(cam.o.add(d.mul(140)), d.norm());
// Accumuate radiance
r = r.add(radiance(camRay, 0).mul(1.0 / samps));
}
// Convert radiance to color
c[i] = c[i].add((new Vec(clamp(r.x), clamp(r.y), clamp(r.z))).mul(.25));
}
}
}
renderOutput();
y++;
if (y < h)
setTimeout(renderLine, 0);
else
status.innerHTML = (new Date().getTime() - start) / 1000 + " sec";
}
function renderOutput() {
var i = (h - y - 1) * w * 4, j = (h - y - 1) * w;
for (var x = 0; x < w; x++) {
pixels[i++] = toInt(c[j].x);
pixels[i++] = toInt(c[j].y);
pixels[i++] = toInt(c[j].z);
pixels[i++] = 255;
j++;
}
ctx.putImageData(imgdata, 0, 0);
}
}